
SCST technical description

Vladislav Bolkhovitin Version 3.0.0 for SCST 3.0.0 and later

Contents

1 Introduction 3

2 Terms and De�nitions 4

3 SCST Core Architecture 4

4 Target drivers 4

4.1 struct scst_tgt_template . 4

4.1.1 More about xmit_response() . 9

4.2 Target driver registration functions . 10

4.2.1 scst_register_target_template() . 10

4.2.2 scst_register_target() . 10

4.3 Target driver unregistration functions . 10

4.3.1 scst_unregister_target() . 11

4.3.2 scst_unregister_target_template() . 11

5 Device speci�c drivers (backend device handlers) 11

5.1 Structure scst_dev_type . 12

5.2 Device speci�c drivers registration . 14

5.2.1 scst_register_dev_driver() . 14

5.2.2 scst_register_virtual_device() . 15

5.3 Device speci�c drivers unregistration . 15

5.3.1 scst_unregister_virtual_device() . 15

5.3.2 scst_unregister_dev_driver() . 16

6 SCST sessions 16

6.1 SCST sessions registration . 16

6.2 SCST sessions unregistration . 17

CONTENTS 2

7 Commands processing and interaction between SCST core and its drivers 18

7.1 The commands processing functions . 18

7.1.1 scst_rx_cmd() . 18

7.1.2 scst_cmd_init_done() . 20

7.1.3 scst_rx_data() . 20

7.1.4 scst_tgt_cmd_done() . 21

7.2 The commands processing context . 21

7.2.1 Preferred context constants . 22

7.3 SCST commands' processing states . 22

8 Task management functions 23

8.1 scst_rx_mgmt_fn_tag() . 24

8.2 scst_rx_mgmt_fn_lun() . 25

9 SGV cache 26

9.1 Implementation . 26

9.2 Interface . 27

9.2.1 sgv_pool *sgv_pool_create() . 27

9.2.2 void sgv_pool_del() . 28

9.2.3 void sgv_pool_�ush() . 28

9.2.4 void sgv_pool_set_allocator() . 28

9.2.5 struct scatterlist *sgv_pool_alloc() . 28

9.2.6 void sgv_pool_free() . 29

9.2.7 void *sgv_get_priv(struct sgv_pool_obj *sgv) . 29

9.2.8 void scst_init_mem_lim() . 30

9.3 Runtime information and statistics. 30

10 Target driver qla2x00t 30

10.1 Driver initialization . 30

10.2 Driver unload . 31

10.3 Enabling target mode . 31

10.4 Disabling target mode . 31

10.5 SCST sessions management . 32

10.6 Handling stuck commands . 32

1. Introduction 3

A Debugging and troubleshooting 33

A.1 Logging levels management . 33

A.2 Preparing a debug kernel . 34

A.3 Preparing logging subsystem . 35

A.4 Decoding OOPS messages . 35

1 Introduction

SCST is a SCSI target mid-level subsystem for Linux. It provides uni�ed consistent interface between SCSI

target drivers, backend device handlers and Linux kernel as well as simpli�es target drivers development as

much as possible.

It has the following features:

• Very low overhead and �ne-grained locks, which allow to reach maximum possible performance and

scalability that close to theoretical limit.

• Complete SMP support.

• Performs all required pre- and post- processing of incoming requests and all necessary error recovery

functionality.

• Emulates necessary functionality of SCSI host adapters, because from a remote initiator's point of view

SCST acts as a SCSI host with its own devices. Some of the emulated functions are the following:

� Generation of necessary UNIT ATTENTIONs, their storage and delivery to all connected remote

initiators (sessions).

� RESERVE/RELEASE functionality, including Persistent Reservations.

� All types of RESETs and other task management functions.

� REPORT LUNS command as well as SCSI address space management in order to have consistent

address space on all remote initiators, since local SCSI devices could not know about each other to

report via REPORT LUNS command. Additionally, SCST responds with error on all commands

to non-existing devices and provides access control, so di�erent remote initiators could see di�erent

set of devices.

� Other necessary functionality (task attributes, etc.) as speci�ed in SAM-2, SPC-2, SAM-3, SPC-3

and other SCSI standards.

• Veri�es all incoming requests to ensure commands execution reliability and security.

• Device handlers architecture provides extra �exibility by allowing to make additional requests process-

ing, which is completely independent from target drivers, for example, data caching or device dependent

exceptional conditions treatment.

2. Terms and De�nitions 4

2 Terms and De�nitions

SCSI initiator device

A SCSI device that originates service and task management requests to be processed by a SCSI target device

and receives device service and task management responses from SCSI target devices.

SCSI target device

A SCSI device that receives device service and task management requests for processing and sends device

service and task management responses to SCSI initiator devices or drivers.

SCST session

SCST session is the object that describes relationship between a remote initiator and SCST via a target

driver. All the commands from the remote initiator is passed to SCST in the session. For example, for

connection oriented protocols, like iSCSI, SCST session could be mapped to TCP connection (as well as

iSCSI session). SCST session is equivalent of SCSI I_T nexus object.

Local SCSI initiator

A SCSI initiator that is located on the same host as SCST subsystem. Examples are sg and st drivers.

Remote SCSI initiator

A SCSI initiator that is located on the remote host for SCST subsystem and makes client connections to

SCST via SCST target drivers.

SCSI target driver

A Linux hardware or logical driver that acts as a SCSI target for remote SCSI initiators, i.e. accepts remote

connections, passes incoming SCSI requests to SCST and sends SCSI responses from SCST back to their

originators.

Device (backend) handler driver

Also known as "device type speci�c driver" or "dev handler", SCST driver, which helps SCST to analyze

incoming requests and determine parameters, speci�c to various types of devices as well as perform some

processing. See below for more details.

3 SCST Core Architecture

SCST accepts commands and passes them to SCSI mid-level at the same way as SCSI high-level drivers (sg,

sd, st) do. Figure 1 shows interaction between SCST, its drivers and Linux SCSI subsystem.

4 Target drivers

4.1 struct scst_tgt_template

To work with SCST a target driver must register its template in SCST by calling

scst_register_target_template(). The template lets SCST know the target driver's entry points. It is

de�ned as the following:

4. Target drivers 5

Figure 1: Interaction between SCST, its drivers and Linux SCSI subsystem.

4. Target drivers 6

struct scst_tgt_template

{

int sg_tablesize;

const char name[SCST_MAX_NAME];

unsigned unchecked_isa_dma:1;

unsigned use_clustering:1;

unsigned no_clustering:1;

unsigned xmit_response_atomic:1;

unsigned rdy_to_xfer_atomic:1;

unsigned no_proc_entry:1;

int max_hw_pending_time;

int threads_num;

int (*detect) (struct scst_tgt_template *tgt_template);

int (*release)(struct scst_tgt *tgt);

int (*xmit_response)(struct scst_cmd *cmd);

int (* rdy_to_xfer)(struct scst_cmd *cmd);

void (*on_hw_pending_cmd_timeout) (struct scst_cmd *cmd);

void (*on_free_cmd) (struct scst_cmd *cmd);

int (*alloc_data_buf) (struct scst_cmd *cmd);

void (*preprocessing_done) (struct scst_cmd *cmd);

int (*pre_exec) (struct scst_cmd *cmd);

void (*task_mgmt_affected_cmds_done) (struct scst_mgmt_cmd *mgmt_cmd);

void (*task_mgmt_fn_done)(struct scst_mgmt_cmd *mgmt_cmd);

int (*report_aen) (struct scst_aen *aen);

int (*read_proc) (struct seq_file *seq, struct scst_tgt *tgt);

int (*write_proc) (char *buffer, char **start, off_t offset,

int length, int *eof, struct scst_tgt *tgt);

int (*get_initiator_port_transport_id) (struct scst_session *sess,

uint8_t **transport_id);

}

4. Target drivers 7

Where:

• sg_tablesize - allows checking whether scatter/gather can be used or not and, if yes, sets the maximum

supported count of scatter/gather entries

• name - the name of the template. Must be unique to identify the template. Must be de�ned.

• unchecked_isa_dma - true, if this target adapter uses unchecked DMA onto an ISA bus.

• use_clustering - true, if this target adapter wants to use clustering (i.e. smaller number of merged

segments).

• no_clustering - true, if this target adapter doesn't support SG-vector clustering

• xmit_response_atomic, rdy_to_xfer_atomic - true, if the corresponding function supports

execution in the atomic (non-sleeping) context.

• no_proc_entry - true, if this template doesn't need the entry in /proc

• max_hw_pending_time - The maximum time in seconds cmd can stay inside the target hardware,

i.e. after rdy_to_xfer() and xmit_response(), before on_hw_pending_cmd_timeout() will be called,

if de�ned. In the current implementation a cmd will be aborted in time t max_hw_pending_time

<= t < 2*max_hw_pending_time.

• threads_num - number of additional threads to the pool of dedicated threads. Used if

xmit_response() or rdy_to_xfer() is blocking. It is the target driver's duty to ensure that not more,

than that number of threads, are blocked in those functions at any time.

• int (*detect) (struct scst_tgt_template *tgt_template) - this function is intended to detect

the target adapters that are present in the system. Each found adapter should be registered by calling

scst_register_target(). The function should return a value >= 0 to signify the number of detected

target adapters. A negative value should be returned whenever there is an error. Must be de�ned.

• int (*release)(struct scst_tgt *tgt) - this function is intended to free up resources allocated to the

device. The function should return 0 to indicate successful release or a negative value if there are some

issues with the release. In the current version of SCST the return value is ignored. Must be de�ned.

• int (*xmit_response)(struct scst_cmd *cmd) - this function is equivalent to the SCSI queuecom-

mand(). The target should transmit the response data and the status in the struct scst_cmd. See

below for details. Must be de�ned.

• int (*rdy_to_xfer)(struct scst_cmd *cmd) - this function informs the driver that data bu�er

corresponding to the said command have now been allocated and it is OK to receive data for this

command. This function is necessary because a SCSI target does not have any control over the

commands it receives. Most lower-level protocols have the corresponding function which informs the

initiator that bu�ers have been allocated e.g., XFER_RDY in Fibre Channel. After the data actually

received, the low-level driver should call scst_rx_data() in order to continue processing this command.

Returns one of the SCST_TGT_RES_* constants, described below. Pay attention to "atomic"

attribute of the command, which can be get via scst_cmd_atomic(). It is true if the function called

in the atomic (non-sleeping) context. Must be de�ned.

4. Target drivers 8

• void (*on_hw_pending_cmd_timeout) (struct scst_cmd *cmd) - Called if cmd

stays inside the target hardware, i.e. after rdy_to_xfer() and xmit_response(), more than

max_hw_pending_time time. The target driver supposed to cleanup this command and resume

cmd's processing.

• void (*on_free_cmd)(struct scst_cmd *cmd) - this function called to notify the driver that the

command is about to be freed. Necessary, because for aborted commands xmit_response() could not

be called. Could be used on IRQ context. Must be de�ned.

• int (*alloc_data_buf) (struct scst_cmd *cmd) - this function allows target driver to handle

data bu�er allocations on its own. Target driver doesn't have to always allocate bu�er in this function,

but if it decided to do it, it must check that scst_cmd_get_data_bu�_alloced() returns 0, otherwise

to avoid double bu�er allocation and memory leaks alloc_data_buf() shall fail. Returns 0 in case of

success or < 0 (preferrably -ENOMEM) in case of error, or > 0 if the regular SCST allocation should

be done. In case of returning successfully, scst_cmd->tgt_data_buf_alloced will be set by SCST. It

is possible that both target driver and dev handler request own memory allocation. If allocation in

atomic context, i.e. scst_cmd_atomic() is true, and < 0 is returned, this function will be recalled in

thread context. Note that the driver will have to handle itself all relevant details such as scatterlist

setup, highmem, freeing the allocated memory, etc.

• void (*preprocessing_done) (struct scst_cmd *cmd) - this function informs the driver that data

bu�er corresponding to the said command have now been allocated and other preprocessing tasks have

been done. A target driver could need to do some actions at this stage. After the target driver done the

needed actions, it shall call scst_restart_cmd() in order to continue processing this command. In case

of preliminary commands completion, this function will also be called before xmit_response(). Called

only for commands queued using scst_cmd_init_stage1_done() instead of scst_cmd_init_done().

Returns void, the result is expected to be returned using scst_restart_cmd(). This command is

expected to be NON-BLOCKING. If it is blocking, consider to set threads_num to some none 0

number. Pay attention to "atomic" attribute of the cmd, which can be get by scst_cmd_atomic(). It

is true if the function called in the atomic (non-sleeping) context.

• int (*pre_exec) (struct scst_cmd *cmd) - this function informs the driver that the said command

is about to be executed. Returns one of the SCST_PREPROCESS_* constants. This command is

expected to be NON-BLOCKING. If it is blocking, consider to set threads_num to some none 0

number.

• void (*task_mgmt_a�ected_cmds_done) (struct scst_mgmt_cmd *mgmt_cmd) - this

function informs the driver that all a�ected by the corresponding task management function commands

have beed completed. No return value expected. This function is expected to be NON-BLOCKING.

Called without any locks held from a thread context.

• void (*task_mgmt_fn_done)(struct scst_mgmt_cmd *mgmt_cmd) - this function informs

the driver that a received task management function has been completed. Completion status could

be get via scst_mgmt_cmd_get_status(). No return value expected. Must be de�ned, if the target

supports task management functionality.

• int (*report_aen) (struct scst_aen *aen) - this function is used for Asynchronous Event Noti-

�cations. Returns one of the SCST_AEN_RES_* constants. After AEN is sent, target driver must

call scst_aen_done() and, optionally, scst_set_aen_delivery_status(). This function is expected to

be NON-BLOCKING, but can sleep. This function must be prepared to handle AENs between calls for

4. Target drivers 9

the corresponding session of scst_unregister_session() and unreg_done_fn() callback called or before

scst_unregister_session() returned, if its called in the blocking mode. AENs for such sessions should

be ignored. Must be de�ned, if low-level protocol supports AENs.

• int (*read_proc) (struct seq_�le *seq, struct scst_tgt *tgt), int (*write_proc) (char

*bu�er, char **start, o�_t o�set, int length, int *eof, struct scst_tgt *tgt) - those functions

can be used to export the driver's statistics and other infos to the world outside the kernel as well as

to get some management commands from it. If the driver needs to create additional �les in its /proc

subdirectory, it can use scst_proc_get_tgt_root() function to get the root proc_dir_entry.

• int (*get_initiator_port_transport_id) (struct scst_session *sess, uint8_t **trans-

port_id) - this function returns in tr_id the corresponding to sess initiator port TransporID in

the form as it's used by PR commands, see "Transport Identi�ers" in SPC. Space for the initiator

port TransporID must be allocated via kmalloc(). Caller supposed to kfree() it, when it isn't needed

anymore. If sess is NULL, this function must return TransportID PROTOCOL IDENTIFIER of this

transport. Returns 0 on success or negative error code otherwise. Should be de�ned, because it's

required for Persistent Reservations.

Functions xmit_response(), rdy_to_xfer() are expected to be non-blocking, i.e. return immediately

and don't wait for actual data transfer to �nish. Blocking in such command could negatively impact on

overall system performance. If blocking is necessary, it is worth to consider creating dedicated thread(s) in

target driver, to which the commands would be passed and which would perform blocking operations instead

of SCST. If the function allowed to sleep or not is de�ned by "atomic" attribute of the cmd that can be

get via scst_cmd_atomic(), which is true, if sleeping is not allowed. In this case, if the function requires

sleeping, it can return SCST_TGT_RES_NEED_THREAD_CTX in order to be recalled in the thread

context, where sleeping is allowed.

Functions task_mgmt_fn_done() and report_aen() are recommended to be non-blocking as well.

Blocking there will stop all management processing for all target drivers in the system (there is only one

management thread in the system).

Functions xmit_response() and rdy_to_xfer() can return the following error codes:

• SCST_TGT_RES_SUCCESS - success.

• SCST_TGT_RES_QUEUE_FULL - internal device queue is full, retry again later.

• SCST_TGT_RES_NEED_THREAD_CTX - it is impossible to complete requested task in

atomic context. The command should be restarted in the thread context as described above.

• SCST_TGT_RES_FATAL_ERROR - fatal error, i.e. it is unable to perform requested op-

eration. If returned by xmit_response() the command will be destroyed, if by rdy_to_xfer(),

xmit_response() will be called with HARDWARE ERROR sense data.

4.1.1 More about xmit_response()

As already written above, function xmit_response() should transmit the response data and the status from

the cmd parameter.

Sense data, if any, is contained in the bu�er, returned by scst_cmd_get_sense_bu�er(), with length, re-

turned by scst_cmd_get_sense_bu�er_len(). SCST always works in autosense mode. If a low-level SCSI

4. Target drivers 10

driver/device doesn't support autosense mode, SCST will issue REQUEST SENSE command, if necessary.

Thus, if CHECK CONDITION established, target driver will always see sense in the sense bu�er and isn't

required to request the sense manually.

After the response is completely sent, the target should call scst_tgt_cmd_done() function in order to allow

SCST to free the command.

Function xmit_response() returns one of the SCST_TGT_RES_* constants, described above. Pay atten-

tion to "atomic" attribute of the cmd, which can be get via scst_cmd_atomic(): it is true if the function

called in the atomic (non-sleeping) context.

To detect aborted commands xmit_response() must in the beginning check return sta-

tus of function scst_cmd_aborted_on_xmit(). If it's true, xmit_response() must call

scst_set_delivery_status(cmd, SCST_CMD_DELIVERY_ABORTED) and terminate further

processing by calling scst_tgt_cmd_done(cmd, SCST_CONTEXT_SAME).

4.2 Target driver registration functions

4.2.1 scst_register_target_template()

Function scst_register_target_template() is de�ned as the following:

int scst_register_target_template(

struct scst_tgt_template *vtt)

Where:

• vtt - pointer to the target driver template

Returns 0 on success or appropriate error code otherwise.

4.2.2 scst_register_target()

Function scst_register_target() is de�ned as the following:

struct scst_tgt *scst_register_target(

struct scst_tgt_template *vtt)

Where:

• vtt - pointer to the target driver template

Returns target structure based on template vtt or NULL in case of error.

4.3 Target driver unregistration functions

In order to unregister itself target driver should at �rst call scst_unregister_target() for all its adapters

and then call scst_unregister_target_template() for its template.

5. Device speci�c drivers (backend device handlers) 11

4.3.1 scst_unregister_target()

Function scst_unregister_target() is de�ned as the following:

void scst_unregister_target(

struct scst_tgt *tgt)

Where:

• tgt - pointer to the target driver structure

4.3.2 scst_unregister_target_template()

Function scst_unregister_target_template() is de�ned as the following:

void scst_unregister_target_template(

struct scst_tgt_template *vtt)

Where:

• vtt - pointer to the target driver template

5 Device speci�c drivers (backend device handlers)

Device speci�c drivers are add-ons for SCST, which help SCST to analyze incoming requests and determine

parameters, speci�c to various types of devices as well as actually execute speci�ed SCSI commands. Device

handlers are intended for the following:

• To get data transfer length and direction directly from CDB and current device's con�guration exactly

as an end-target SCSI device does. This serves two purposes:

� Improves security and reliability by not trusting the data supplied by remote initiator via SCSI

low-level protocol.

� Some low-level SCSI protocols don't provide data transfer length and direction, so that information

can be get only directly from CDB and current device's con�guration. For example, for tape

devices to get data transfer size it might be necessary to know block size setting.

• Execute commands

• To process some exceptional conditions, like ILI on tape devices.

• To initialize incoming commands with some device-speci�c parameters, like timeout value.

• To allow some additional device-speci�c commands pre-, post- processing or alternative execution, like

copying data from system cache, and do that completely independently from target drivers.

Device handlers considered to be part of SCST, so they could directly access any �elds in SCST's structures

as well as use the corresponding functions.

Without appropriate device handler SCST hides devices of this type from remote initiators and returns

HARDWARE ERROR sense data to any requests to them.

5. Device speci�c drivers (backend device handlers) 12

5.1 Structure scst_dev_type

Structure scst_dev_type is de�ned as the following:

struct scst_dev_type

{

char name[];

int type;

unsigned parse_atomic:1;

unsigned alloc_data_buf_atomic:1;

unsigned dev_done_atomic:1;

unsigned no_proc:1;

unsigned exec_sync:1;

unsigned pr_cmds_notifications:1;

int threads_num;

enum scst_dev_type_threads_pool_type threads_pool_type;

int (*attach) (struct scst_device *dev);

void (*detach) (struct scst_device *dev);

int (*attach_tgt) (struct scst_tgt_device *tgt_dev);

void (*detach_tgt) (struct scst_tgt_device *tgt_dev);

int (*parse) (struct scst_cmd *cmd);

int (*alloc_data_buf) (struct scst_cmd *cmd);

int (*exec) (struct scst_cmd *cmd);

int (*dev_done) (struct scst_cmd *cmd);

int (*on_free_cmd) (struct scst_cmd *cmd);

int (*task_mgmt_fn) (struct scst_mgmt_cmd *mgmt_cmd,

struct scst_tgt_dev *tgt_dev);

int (*read_proc) (struct seq_file *seq, struct scst_dev_type *dev_type);

int (*write_proc) (char *buffer, char **start, off_t offset,

int length, int *eof, struct scst_dev_type *dev_type);

}

Where:

• name - the name of the device handler. Must be de�ned and unique.

• type - SCSI type of the supported device. Must be de�ned.

5. Device speci�c drivers (backend device handlers) 13

• parse_atomic, alloc_data_buf_atomic, dev_done_atomic - true, if the corresponding call-

back supports execution in the atomic (non-sleeping) context.

• no_proc - true, if no /proc �les should be automatically created by SCST for this dev handler

• exec_sync - should be true, if exec() is synchronous. This is a hint to SCST core to optimize

commands order management.

• pr_cmds_noti�cations - should be set if the device wants to receive noti�cation of Persistent

Reservation commands (PR OUT only) Note: The noti�cations will not be sent if the command failed.

• threads_num - sets number of threads in this handler's devices' threads pools. If 0 - no threads will

be created, if <0 - creation of the threads pools is prohibited. Also pay attention to threads_pool_type

below.

• threads_pool_type - threads pool type. Valid only if threads_num > 0. Possible values:

� SCST_THREADS_POOL_PER_INITIATOR - each initiator will have dedicated

threads pool

� SCST_THREADS_POOL_SHARED - all connected initiators will use shared threads pool

• int (*attach) (struct scst_device *dev) - called when new device is being attached to the device

handler

• void (*detach) (struct scst_device *dev) - called when new device is being detached from the

device handler

• int (*attach_tgt) (struct scst_tgt_device *tgt_dev) - called when new tgt_dev (session) is

being attached to the device handler

• void (*detach_tgt) (struct scst_tgt_device *tgt_dev) - called when tgt_dev (session) is being

detached from the device handler

• int (*parse) (struct scst_cmd *cmd, const struct scst_info_cdb *cdb_info) - called to

parse CDB from the cmd and initialize cmd->bu�en and cmd->data_direction (both - REQUIRED).

Returns the command's next state or SCST_CMD_STATE_DEFAULT , if the next default state

should be used, or SCST_CMD_STATE_NEED_THREAD_CTX if the function called in atomic

context, but requires sleeping, or SCST_CMD_STATE_STOP if the command should not be further

processed for now. In the SCST_CMD_STATE_NEED_THREAD_CTX case the function will be

recalled in the thread context, where sleeping is allowed. Pay attention to "atomic" attribute of the

cmd, which can be get by scst_cmd_atomic(). It is true if the function called in the atomic (non-

sleeping) context. Must be de�ned.

• int (*alloc_data_buf) (struct scst_cmd *cmd) - this function allows dev handler to handle data

bu�er allocations on its own. Returns the command's next state or SCST_CMD_STATE_DEFAULT ,

if the next default state should be used, or SCST_CMD_STATE_NEED_THREAD_CTX if the func-

tion called in atomic context, but requires sleeping, or SCST_CMD_STATE_STOP if the command

should not be further processed for now. In the SCST_CMD_STATE_NEED_THREAD_CTX case

the function will be recalled in the thread context, where sleeping is allowed. Pay attention to "atomic"

attribute of the cmd, which can be get by scst_cmd_atomic(). It is true if the function called in the

atomic (non-sleeping) context.

5. Device speci�c drivers (backend device handlers) 14

• int (*exec) (struct scst_cmd *cmd) - called to execute CDB. Useful, for instance, to implement

data caching. The result of CDB execution is reported via cmd->scst_cmd_done() callback.

Returns:

� SCST_EXEC_COMPLETED - the cmd is done, go to other ones

� SCST_EXEC_NOT_COMPLETED - the cmd should be sent to SCSI mid-level.

If this function provides sync execution, you should set exec_sync �ag and consider to setup dedicated

threads by setting threads_num > 0.

Optional, if not set, the commands will be sent directly to SCSI device.

If this function is implemented, scst_check_local_events() shall be called inside it just

before the actual command's execution.

• int (*dev_done) (struct scst_cmd *cmd) - called to notify device handler about the result of

the command's execution and perform some post processing. If parse() function is called, dev_done()

is guaranteed to be called as well. The command's �elds tgt_resp_�ags and resp_data_len should

be set by this function, but SCST o�ers good defaults. Pay attention to "atomic" attribute of the

command, which can be get via scst_cmd_atomic(). It is true if the function called in the atomic

(non-sleeping) context. Returns the command's next state or SCST_CMD_STATE_DEFAULT , if the

next default state should be used, or SCST_CMD_STATE_NEED_THREAD_CTX if the function

called in atomic context, but requires sleeping. In the last case, the function will be recalled in the

thread context, where sleeping is allowed.

• void (*on_free_cmd) (struct scst_cmd *cmd) - called to notify device handler that the com-

mand is about to be freed. Could be called on IRQ context.

• int (*task_mgmt_fn) (struct scst_mgmt_cmd *mgmt_cmd, struct scst_tgt_dev

*tgt_dev) - called to execute a task management command. Returns:

� SCST_MGMT_STATUS_SUCCESS - the command is done with success, no further ac-

tions required

� SCST_MGMT_STATUS_* - the command is failed, no further actions required

� SCST_DEV_TM_NOT_COMPLETED - regular standard actions for the command

should be done

NOTE: for SCST_ABORT_TASK it is called under spinlock!

• int (*read_proc) (struct seq_�le *seq, struct scst_tgt *tgt), int (*write_proc) (char

*bu�er, char **start, o�_t o�set, int length, int *eof, struct scst_tgt *tgt) - those functions

can be used to export the driver's statistics and other infos to the world outside the kernel as well as

to get some management commands from it. If the driver needs to create additional �les in its /proc

subdirectory, it can use scst_proc_get_dev_type_root() function to get the root proc_dir_entry.

5.2 Device speci�c drivers registration

5.2.1 scst_register_dev_driver()

To work with SCST a device speci�c driver must register itself in SCST by calling

scst_register_dev_driver(). It is de�ned as the following:

5. Device speci�c drivers (backend device handlers) 15

int scst_register_dev_driver(

struct scst_dev_type *dev_type)

Where:

• dev_type - device speci�c driver's description structure

The function returns 0 on success or appropriate error code otherwise.

5.2.2 scst_register_virtual_device()

To create a virtual device a device handler must register it in SCST by calling

scst_register_virtual_device(). It is de�ned as the following:

int scst_register_virtual_device(

struct scst_dev_type *dev_handler,

const char *dev_name)

Where:

• dev_handler - device speci�c driver's description structure

• dev_name - the new device name, NULL-terminated string. Must be unique among all virtual devices

in the system.

The function returns ID assigned to the device on success, or negative value otherwise.

All local real SCSI devices will be registered and unregistered by the SCST core automatically, so pass-

through dev handlers don't have to worry about it.

5.3 Device speci�c drivers unregistration

5.3.1 scst_unregister_virtual_device()

Virtual devices unregistered by calling scst_unregister_virtual_device(). It is de�ned as the following:

void scst_unregister_virtual_device(

int id)

Where:

• id - the device's ID, returned by the registration function.

6. SCST sessions 16

5.3.2 scst_unregister_dev_driver()

Device speci�c driver is unregistered by calling scst_unregister_dev_driver(). It is de�ned as the

following:

void scst_unregister_dev_driver(

struct scst_dev_type *dev_type)

Where:

• dev_type - device speci�c driver's description structure

6 SCST sessions

6.1 SCST sessions registration

When target driver determines that it needs to create new SCST session (for example, by receiving new

TCP connection), it should call scst_register_session(), that is de�ned as the following:

struct scst_session *scst_register_session(

struct scst_tgt *tgt,

int atomic,

const char *initiator_name,

void *tgt_priv,

void *result_fn_data,

void (*result_fn) (

struct scst_session *sess,

void *data,

int result))

Where:

• tgt - target

• atomic - true, if the function called in the atomic context

• initiator_name - remote initiator's name, any NULL-terminated string, e.g. iSCSI name, which used

as the key to found appropriate access control group. Could be NULL, then "default" group is used.

The groups are set up via /proc interface.

• tgt_priv - pointer to target driver's private data

• result_fn_data - data that will be used as the second parameter for bfresult_fn/()/ function

• result_fn - pointer to the function that will be asynchronously called when session initialization

�nishes. Can be NULL. Parameters:

� sess - session

6. SCST sessions 17

� data - target driver supplied to scst_register_session() data

� result - session initialization result, 0 on success or appropriate error code otherwise

A session creation and initialization is a complex task, which requires sleeping state, so it can't be fully

done in interrupt context. Therefore the "bottom half" of it, if scst_register_session() is called from atomic

context, will be done in SCST thread context. In this case scst_register_session() will return not completely

initialized session, but the target driver can supply commands to this session via scst_rx_cmd(). Those

commands processing will be delayed inside SCST until the session initialization is �nished, then their

processing will be restarted. The target driver will be noti�ed about �nish of the session initialization by

function result_fn(). On success the target driver could do nothing, but if the initialization fails, the target

driver must ensure that no more new commands being sent or will be sent to SCST after result_fn() returns.

All already sent to SCST commands for failed session will be returned in xmit_response() with BUSY

status. In case of failure the driver shall call scst_unregister_session() inside result_fn(), it will NOT be

called automatically.

Thus, scst_register_session() can be safely called from IRQ context.

6.2 SCST sessions unregistration

SCST session unregistration basically is the same, except that instead of atomic parameter there is wait

one.

void scst_unregister_session(

struct scst_session *sess,

int wait,

void (*unreg_done_fn)(

struct scst_session *sess))

Where:

• sess - session to be unregistered

• wait - if true, instructs to wait until all commands, which currently being executed in the session,

�nished. Otherwise, target driver should be prepared to receive xmit_response() for the session after

scst_unregister_session() returns.

• unreg_done_fn - pointer to the function that will be asynchronously called when the last session's

command �nishes and the session is about to be completely freed. Can be NULL. Parameter:

� sess - session

All outstanding commands will be �nished regularly. After scst_unregister_session() returned no new

commands must be sent to SCST via scst_rx_cmd(). Also, the caller must ensure that no scst_rx_cmd()

or scst_rx_mgmt_fn_*() is called in parallel with scst_unregister_session().

Function scst_unregister_session()/ can be called before result_fn() of scst_register_session() called, i.e.

during the session registration/initialization.

7. Commands processing and interaction between SCST core and its drivers 18

7 Commands processing and interaction between SCST core and

its drivers

Consider simpli�ed commands processing example. It assumes that target driver doesn't need own memory

allocation, i.e. not de�ned alloc_data_buf() callback. Example of such target driver is qla2x00t.

The commands processing by SCST started when target driver calls scst_rx_cmd(). This function re-

turns SCST's command. Then the target driver �nishes the command's initialization, for example, storing

necessary target driver speci�c data there, and calls scst_cmd_init_done() telling SCST that it can

start the command processing. Then SCST translates the command's LUN to local device, determines the

command's data direction and required data bu�er size by calling appropriate device handler's parse()

callback function. Then:

• If the command required no data transfer, it will be passed to SCSI mid-level directly or via device

handler's exec() callback.

• If the command is a READ command (data to the remote/local initiator), necessary space will be

allocated and then the command will be passed to SCSI mid-level directly or via device handler's

exec() callback.

• If the command is a WRITE command (data from the remote/local initiator), necessary space will be

allocated, then the target's rdy_to_xfer() callback will be called, telling the target that the space

is ready and it can start data transferring. When all the data are read from the target, it will call

scst_rx_data(), and the command will be passed to SCSI mid-level directly or via device handler's

exec() callback.

When the command is �nished by SCSI mid-level, device handler's dev_done() callback is called to notify

it about the command's completion. Then in order to send its response the target's xmit_response()

callback is called. When the response, including data, if any, is transmitted, the target will call

scst_tgt_cmd_done() to tell SCST that it can free the command and its data bu�er.

Then during the command's deallocation device handler's and the target's on_free_cmd() callback will

be called in this order, if set.

This sequence is illustrated on Figure 2. To simplify the picture, sign "..." means SCST's waiting state for

the corresponding command to complete. During this state SCST and its drivers continue processing of

other commands, if there are any. One way arrow, for example to xmit_response(), means that after this

function returns, nothing valuable for the current command will be done and SCST goes sleeping or to the

next command processing until the corresponding event happens.

7.1 The commands processing functions

7.1.1 scst_rx_cmd()

Function scst_rx_cmd() creates and sends new command to SCST. Returns the command on success or

NULL otherwise. It is de�ned as the following:

struct scst_cmd *scst_rx_cmd(

struct scst_session *sess,

7. Commands processing and interaction between SCST core and its drivers 19

Figure 2: The commands processing �ow

7. Commands processing and interaction between SCST core and its drivers 20

const uint8_t *lun,

int lun_len,

const uint8_t *cdb,

int cdb_len,

int atomic)

Where:

• sess - SCST's session

• lun - pointer to device's LUN as speci�ed by SAM in without any byte order translation. Extended

addressing method is not supported.

• lun_len - LUN's length

• cdb - SCSI CDB

• cdb_len - CDB's length. Can be up to 64KB long.

• atomic - if true, the command will be allocated with GFP_ATOMIC �ag, otherwise GFP_KERNEL

will be used

7.1.2 scst_cmd_init_done()

Function scst_cmd_init_done() noti�es SCST that the driver �nished its part of the command initial-

ization, and the command is ready for execution. It is de�ned as the following:

void scst_cmd_init_done(

struct scst_cmd *cmd,

enum scst_exec_context pref_context)

Where:

• cmd - the command

• pref_context - preferred command execution context. See SCST_CONTEXT_* constants below

for details.

7.1.3 scst_rx_data()

Function scst_rx_data() noti�es SCST that the driver received all the necessary data and the command

is ready for further processing. It is de�ned as the following:

void scst_rx_data(

struct scst_cmd *cmd,

int status,

enum scst_exec_context pref_context)

Where:

7. Commands processing and interaction between SCST core and its drivers 21

• cmd - the command

• status - completion status, see below.

• pref_context - preferred command execution context. See SCST_CONTEXT_* constants below

for details.

Parameter status can have one of the following values:

• SCST_RX_STATUS_SUCCESS - success

• SCST_RX_STATUS_ERROR - data receiving �nished with error, so SCST should set the sense

and �nish the command by calling xmit_response()

• SCST_RX_STATUS_ERROR_SENSE_SET - data receiving �nished with error and the sense

is set, so SCST should �nish the command by calling xmit_response()

• SCST_RX_STATUS_ERROR_FATAL - data receiving �nished with fatal error, so SCST

should �nish the command, but don't call xmit_response(). In this case the driver must free all

associated with the command data before calling scst_rx_data().

7.1.4 scst_tgt_cmd_done()

Function scst_tgt_cmd_done() noti�es SCST that the driver has sent the data and/or response.

It must not been called if there are an error and xmit_response() returned something other, than

SCST_TGT_RES_SUCCESS. It is de�ned as the following:

void scst_tgt_cmd_done(

struct scst_cmd *cmd,

enum scst_exec_context pref_context)

Where:

• cmd - the command

• pref_context - preferred command execution context. See SCST_CONTEXT_* constants below

for details.

7.2 The commands processing context

Execution context often is a major problem in the kernel drivers development, because many contexts, like

IRQ context, greatly limit available functionality, therefore require additional complex code in order to pass

processing to more simple context. SCST does its best to undertake most of the context handling.

On the initialization time SCST creates for internal command processing as many threads as there are

processors in the system or speci�ed by user via scst_threads module parameter. Similarly, as many

tasklets created as there are processors in the system.

Each command can be processed in one of four contexts:

7. Commands processing and interaction between SCST core and its drivers 22

1. Directly, i.e. in the caller's context, without limitations

2. Directly atomically, i.e. with sleeping forbidden

3. In the SCST's internal threads

4. In the SCST's per processor tasklets

The target driver sets this context as pref_context parameter for SCST functions. Additionally, target's

template's xmit_response_atomic and rdy_to_xfer_atomic �ags have direct in�uence on the context. If

one of them is false, the corresponding function will never be called in the atomic context and, if necessary,

the command will be rescheduled to one of the SCST's threads.

SCST in some circumstances can change preferred context to less restrictive one, for example, for large data

bu�er allocation, if there is not enough GFP_ATOMIC memory.

7.2.1 Preferred context constants

There are the following preferred context constants:

• SCST_CONTEXT_DIRECT - sets direct command processing (i.e. regular function calls in the

current context) sleeping is allowed, no context restrictions. Supposed to be used when calling from

thread context where no locks are held and the driver's architecture allows sleeping without performance

degradation or anything like that.

• SCST_CONTEXT_DIRECT_ATOMIC - sets direct command processing (i.e. regular function

calls in the current context), sleeping is not allowed. Supposed to be used when calling on thread context

where there are locks held, when calling on softirq context or the driver's architecture does not allow

sleeping without performance degradation or anything like that.

• SCST_CONTEXT_TASKLET - tasklet or thread context required for the command processing.

Supposed to be used when calling from IRQ context.

• SCST_CONTEXT_THREAD - thread context required for the command processing. Supposed

to be used if the driver's architecture does not allow using any of above.

• SCST_CONTEXT_SAME - context is the same as it was in previous call of the corresponding

callback. For example, if dev handler's exec() does sync. data reading this value should be used

for scst_cmd_done(). The same is true if scst_tgt_cmd_done() called directly from target driver's

xmit_response(). Not allowed in scst_cmd_init_done() and scst_cmd_init_stage1_done().

7.3 SCST commands' processing states

There are the following processing states, which a SCST command passes through during execution and

which could be returned by device handler's parse() and dev_done() (but not all states are allowed to be

returned):

• SCST_CMD_STATE_INIT_WAIT - the command is created, but scst_cmd_init_done() not

called

8. Task management functions 23

• SCST_CMD_STATE_INIT - LUN translation (i.e. cmd->tgt_dev assignment) state

• SCST_CMD_STATE_PARSE - device handler's parse() is going to be called

• SCST_CMD_STATE_PREPARE_SPACE - allocation of the command's data bu�er

• SCST_CMD_STATE_PREPROCESSING_DONE_CALLED - waiting for

scst_restart_cmd()

• SCST_CMD_STATE_RDY_TO_XFER - target driver's rdy_to_xfer() is going to be called

• SCST_CMD_STATE_DATA_WAIT - waiting for data from the initiator (until scst_rx_data()

called)

• SCST_CMD_STATE_TGT_PRE_EXEC - target driver's pre_exec() is going to be called

• SCST_CMD_STATE_SEND_FOR_EXEC - the command is going to be sent for execution

• SCST_CMD_STATE_EXECUTING - waiting for the command's execution �nish

• SCST_CMD_STATE_LOCAL_EXEC - the command is being checked if it should be executed

locally

• SCST_CMD_STATE_REAL_EXEC - the command is ready for execution

• SCST_CMD_STATE_REAL_EXECUTING - waiting for CDB's execution �nish

• SCST_CMD_STATE_PRE_DEV_DONE - internal post-exec checks

• SCST_CMD_STATE_MODE_SELECT_CHECKS - internal MODE SELECT pages related

checks

• SCST_CMD_STATE_DEV_DONE - device handler's dev_done() is going to be called

• SCST_CMD_STATE_PRE_XMIT_RESP - checks before target driver's xmit_response() is

called

• SCST_CMD_STATE_XMIT_RESP - target driver's xmit_response() is going to be called

• SCST_CMD_STATE_XMIT_WAIT - waiting for data/response's transmission �nish (until

scst_tgt_cmd_done() called)

• SCST_CMD_STATE_FINISHED - the command �nished and going to be freed

8 Task management functions

There are the following task management functions supported:

• SCST_ABORT_TASK - this is ABORT_TASK SAM task management function. Aborts the

speci�ed task (command).

• SCST_ABORT_TASK_SET - this is ABORT_TASK_SET SAM task management function.

Aborts all tasks (commands) in the speci�ed session.

8. Task management functions 24

• SCST_CLEAR_ACA - this is CLEAR_ACA SAM task management function. Currently does

nothing.

• SCST_CLEAR_TASK_SET - this is CLEAR_TASK_SET SAM task management function.

Clears task set of commands on the speci�ed device or session.

• SCST_LUN_RESET - this is LUN_RESET SAM task management function. Resets speci�ed

device.

• SCST_TARGET_RESET - this is TARGET_RESET SAM task management function. Resets

all devices visible in this session.

• SCST_NEXUS_LOSS_SESS - SCST extension. Noti�es about I_T nexus loss event in the

corresponding session. Aborts all tasks there, resets the reservation, if any, and sets up the I_T Nexus

loss UA.

• SCST_ABORT_ALL_TASKS_SESS - SCST extension. Aborts all tasks in the corresponding

session.

• SCST_NEXUS_LOSS - SCST extension. Noti�es about I_T nexus loss event. Aborts all tasks in

all sessions of the tgt, resets the reservations, if any, and sets up the I_T Nexus loss UA.

• SCST_ABORT_ALL_TASKS - SCST extension. Aborts all tasks in all sessions of the tgt.

All task management functions return completion status via task_mgmt_fn_done() when the a�ected SCSI

commands (tasks) are actually aborted, i.e. guaranteed never be executed any time later.

8.1 scst_rx_mgmt_fn_tag()

Function scst_rx_mgmt_fn_tag() tells SCST to perform the speci�ed task management function, based

on the command's tag. Can be used only for SCST_ABORT_TASK .

It is de�ned as the following:

int scst_rx_mgmt_fn_tag(

struct scst_session *sess,

int fn,

uint32_t tag,

int atomic,

void *tgt_priv)

Where:

• sess - the session, on which the command should be performed.

• fn - task management function, one of the constants above.

• tag - the command's tag.

• atomic - true, if the function called in the atomic context.

8. Task management functions 25

• tgt_priv - pointer to the target driver speci�c data, can be retrieved in task_mgmt_fn_done() via

scst_mgmt_cmd_get_status() function.

Returns 0 if the command was successfully created and scheduled for execution, error code otherwise. On

success, the completion status of the command will be reported asynchronously via task_mgmt_fn_done()

driver's callback.

8.2 scst_rx_mgmt_fn_lun()

Function scst_rx_mgmt_fn_lun() tells SCST to perform the speci�ed task management function, based

on the LUN. Currently it can be used for any function, except SCST_ABORT_TASK .

It is de�ned as the following:

int scst_rx_mgmt_fn_lun(

struct scst_session *sess,

int fn,

const uint8_t *lun,

int lun_len,

int atomic,

void *tgt_priv);

Where:

• sess - the session, on which the command should be performed.

• fn - task management function, one of the constants above.

• lun - LUN, the format is the same as for scst_rx_cmd().

• lun_len - LUN's length.

• atomic - true, if the function called in the atomic context.

• tgt_priv - pointer to the target driver speci�c data, can be retrieved in task_mgmt_fn_done() via

scst_mgmt_cmd_get_status() function.

Returns 0 if the command was successfully created and scheduled for execution, error code otherwise. On

success, the completion status of the command will be reported asynchronously via task_mgmt_fn_done()

driver's callback.

Possible status constants which can be returned by scst_mgmt_cmd_get_status():

• SCST_MGMT_STATUS_SUCCESS - success

• SCST_MGMT_STATUS_TASK_NOT_EXIST - requested task does not exist

• SCST_MGMT_STATUS_LUN_NOT_EXIST - requested LUN does not exist

• SCST_MGMT_STATUS_FN_NOT_SUPPORTED - requested TM function does not exist.

• SCST_MGMT_STATUS_REJECTED - TM function rejected.

• SCST_MGMT_STATUS_FAILED - TM function failed.

9. SGV cache 26

9 SGV cache

SCST SGV cache is a memory management subsystem in SCST. One can call it a "memory pool", but Linux

kernel already have a mempool interface, which serves di�erent purposes. SGV cache provides to SCST core,

target drivers and backend dev handlers facilities to allocate, build and cache SG vectors for data bu�ers.

The main advantage of it is the caching facility, when it doesn't free to the system each vector, which is

not used anymore, but keeps it for a while (possibly inde�nitely) to let it be reused by the next consecutive

command. This allows to:

• Reduce commands processing latencies and, hence, improve performance;

• Make commands processing latencies predictable, which is essential for RT applications.

The freed SG vectors are kept by the SGV cache either for some (possibly inde�nite) time, or, optionally,

until the system needs more memory and asks to free some using the set_shrinker() interface. Also the SGV

cache allows to:

• Cluster pages together. "Cluster" means merging adjacent pages in a single SG entry. It allows to

have less SG entries in the resulting SG vector, hence improve performance handling it as well as allow

to work with bigger bu�ers on hardware with limited SG capabilities.

• Set custom page allocator functions. For instance, scst_user device handler uses this facility to elim-

inate unneeded mapping/unmapping of user space pages and avoid unneeded IOCTL calls for bu�ers

allocations. In �leio_tgt application, which uses a regular malloc() function to allocate data bu�ers,

this facility allows 30% less CPU load and considerable performance increase.

• Prevent each initiator or all initiators altogether to allocate too much memory and DoS the target.

Consider 10 initiators, which can have access to 10 devices each. Any of them can queue up to 64

commands, each can transfer up to 1MB of data. So, all of them in a peak can allocate up to 10*10*64

= 6.5GB of memory for data bu�ers. This amount must be limited somehow and the SGV cache

performs this function.

9.1 Implementation

From implementation POV the SGV cache is a simple extension of the kmem cache. It can work in 2 modes:

1. With �xed size bu�ers.

2. With a set of power 2 size bu�ers. In this mode each SGV cache (struct sgv_pool) has

SGV_POOL_ELEMENTS (11 currently) of kmem caches. Each of those kmem caches keeps SGV

cache objects (struct sgv_pool_obj) corresponding to SG vectors with size of order X pages. For in-

stance, request to allocate 4 pages will be served from kmem cache[2], since the order of the of number

of requested pages is 2. If later request to allocate 11KB comes, the same SG vector with 4 pages will

be reused (see below). This mode is in average allows less memory overhead comparing with the �xed

size bu�ers mode.

Consider how the SGV cache works in the set of bu�ers mode. When a request to allocate new SG vector

comes, sgv_pool_alloc() via sgv_get_obj() checks if there is already a cached vector with that order. If

9. SGV cache 27

yes, then that vector will be reused and its length, if necessary, will be modi�ed to match the requested size.

In the above example request for 11KB bu�er, 4 pages vector will be reused and modi�ed using trans_tbl

to contain 3 pages and the last entry will be modi�ed to contain the requested length - 2*PAGE_SIZE. If

there is no cached object, then a new sgv_pool_obj will be allocated from the corresponding kmem cache,

chosen by the order of number of requested pages. Then that vector will be �lled by pages and returned.

In the �xed size bu�ers mode the SGV cache works similarly, except that it always allocate bu�er with the

prede�ned �xed size. I.e. even for 4K request the whole bu�er with prede�ned size, say, 1MB, will be used.

In both modes, if size of a request exceeds the maximum allowed for caching bu�er size, the requested bu�er

will be allocated, but not cached.

Freed cached sgv_pool_obj objects are actually freed to the system either by the purge work, which is

scheduled once in 60 seconds, or in sgv_shrink() called by system, when it's asking for memory.

9.2 Interface

9.2.1 sgv_pool *sgv_pool_create()

struct sgv_pool *sgv_pool_create(

const char *name,

enum sgv_clustering_types clustered, int single_alloc_pages,

bool shared, int purge_interval)

This function creates and initializes an SGV cache. It has the following arguments:

• name - the name of the SGV cache

• clustered - sets type of the pages clustering. The type can be:

� sgv_no_clustering - no clustering performed.

� sgv_tail_clustering - a page will only be merged with the latest previously allocated page, so

the order of pages in the SG will be preserved

� sgv_full_clustering - free merging of pages at any place in the SG is allowed. This mode

usually provides the best merging rate.

• single_alloc_pages - if 0, then the SGV cache will work in the set of power 2 size bu�ers mode. If

>0, then the SGV cache will work in the �xed size bu�ers mode. In this case single_alloc_pages sets

the size of each bu�er in pages.

• shared - sets if the SGV cache can be shared between devices or not. The cache sharing allowed only

between devices created inside the same address space. If an SGV cache is shared, each subsequent

call of sgv_pool_create() with the same cache name will not create a new cache, but instead return a

reference to it.

• purge_interval - sets the cache purging interval. I.e. an SG bu�er will be freed if it's unused for

time t purge_interval <= t < 2*purge_interval. If purge_interval is 0, then the default interval will

be used (60 seconds). If purge_interval <0, then the automatic purging will be disabled. Shrinking

by the system's demand will also be disabled.

Returns the resulting SGV cache or NULL in case of any error.

9. SGV cache 28

9.2.2 void sgv_pool_del()

void sgv_pool_del(

struct sgv_pool *pool)

This function deletes the corresponding SGV cache. If the cache is shared, it will decrease its reference

counter. If the reference counter reaches 0, the cache will be destroyed.

9.2.3 void sgv_pool_�ush()

void sgv_pool_flush(

struct sgv_pool *pool)

This function �ushes, i.e. frees, all the cached entries in the SGV cache.

9.2.4 void sgv_pool_set_allocator()

void sgv_pool_set_allocator(

struct sgv_pool *pool,

struct page *(*alloc_pages_fn)(struct scatterlist *sg, gfp_t gfp, void *priv),

void (*free_pages_fn)(struct scatterlist *sg, int sg_count, void *priv));

This function allows to set for the SGV cache a custom pages allocator. For instance, scst_user uses such

function to supply to the cache mapped from user space pages.

alloc_pages_fn() has the following parameters:

• sg - SG entry, to which the allocated page should be added.

• gfp - the allocation GFP �ags

• priv - pointer to a private data supplied to sgv_pool_alloc()

This function should return the allocated page or NULL, if no page was allocated.

free_pages_fn() has the following parameters:

• sg - SG vector to free

• sg_count - number of SG entries in the sg

• priv - pointer to a private data supplied to the corresponding sgv_pool_alloc()

9.2.5 struct scatterlist *sgv_pool_alloc()

struct scatterlist *sgv_pool_alloc(

struct sgv_pool *pool,

unsigned int size,

gfp_t gfp_mask,

9. SGV cache 29

int flags,

int *count,

struct sgv_pool_obj **sgv,

struct scst_mem_lim *mem_lim,

void *priv)

This function allocates an SG vector from the SGV cache. It has the following parameters:

• pool - the cache to alloc from

• size - size of the resulting SG vector in bytes

• gfp_mask - the allocation mask

• �ags - the allocation �ags. The following �ags are possible and can be set using OR operation:

1. SGV_POOL_ALLOC_NO_CACHED - the SG vector must not be cached.

2. SGV_POOL_NO_ALLOC_ON_CACHE_MISS - don't do an allocation on a cache

miss.

3. SGV_POOL_RETURN_OBJ_ON_ALLOC_FAIL - return an empty SGV object,

i.e. without the SG vector, if the allocation can't be completed. For instance, because

SGV_POOL_NO_ALLOC_ON_CACHE_MISS �ag set.

• count - the resulting count of SG entries in the resulting SG vector.

• sgv - the resulting SGV object. It should be used to free the resulting SG vector.

• mem_lim - memory limits, see below.

• priv - pointer to private for this allocation data. This pointer will be supplied to alloc_pages_fn()

and free_pages_fn() and can be retrieved by sgv_get_priv().

This function returns pointer to the resulting SG vector or NULL in case of any error.

9.2.6 void sgv_pool_free()

void sgv_pool_free(

struct sgv_pool_obj *sgv,

struct scst_mem_lim *mem_lim)

This function frees previously allocated SG vector, referenced by SGV cache object sgv.

9.2.7 void *sgv_get_priv(struct sgv_pool_obj *sgv)

void *sgv_get_priv(

struct sgv_pool_obj *sgv)

This function allows to get the allocation private data for this SGV cache object sgv. The private data are

set by sgv_pool_alloc().

10. Target driver qla2x00t 30

9.2.8 void scst_init_mem_lim()

void scst_init_mem_lim(

struct scst_mem_lim *mem_lim)

This function initializes memory limits structure mem_lim according to the current system con�guration.

This structure should be latter used to track and limit allocated by one or more SGV caches memory.

9.3 Runtime information and statistics.

SGV cache runtime information and statistics is available in /proc/scsi_tgt/sgv .

10 Target driver qla2x00t

Target driver qla2x00t allows to use QLogic 2xxx based adapters in the target (server) mode.

It consists from two parts:

• qla2xxx - patched initiator driver from Linux kernel, which is, among other things, intended to perform

all the initialization and shutdown tasks.

• qla2x00tgt - target mode add-on for the changed qla2xxx

The initiator driver qla2xxx was changed to:

• To provide support for the target mode add-on via a set of exported callbacks

• To provide extra info and management interface in the driver's sysfs interface (attributes tar-

get_mode_enabled, ports_database, etc.)

• To �x some problems uncovered during target mode development and usage.

The changes are relatively small (few thousands lines big patch) and local.

The changed qla2xxx is still capable to work as initiator only. Mode, when a host acts as initiator and target

simultaneously, is supported as well.

Since �rmware interface for 24xx+ chips is fundamentally di�erent from earlier versions, qla2x00t generally

contains 2 separate drivers sharing some common processing.

10.1 Driver initialization

On initialization, qla2x00tgt registers its SCST template tgt2x_template in the SCST core. Then during

template registration SCST core calls detect() callback which is function q2t_target_detect().

In this function qla2x00tgt registers its callbacks in qla2xxx by calling qla2xxx_tgt_register_driver().

Qla2xxx_tgt_register_driver() stores pointer to the being registered callbacks in variable qla_target.

10. Target driver qla2x00t 31

Then q2t_target_detect() calls qla2xxx_add_targets(), which calls for each known local FC port (HBA

instance) qla_target.tgt_host_action() callback with ADD_TARGET action. Then q2t_host_action()

calls q2t_add_target() which registers SCST target for this FC port.

If later a new FC port is hot added, qla2x00_probe_one() will also call for all new local ports

qla_target.tgt_host_action() with ADD_TARGET action.

10.2 Driver unload

When a local FC port is being removed, the Linux kernel calls qla2x00_remove_one(), which then

qla_target.tgt_host_action() with REMOVE_TARGET action.

Then q2t_host_action() calls q2t_remove_target(), which unregisters the corresponding SCST tar-

get in SCST. During unregistration SCST core calls release() callback of tgt2x_template, which is

q2t_target_release().

Then q2t_target_release() calls q2t_target_stop(). Then q2t_target_stop() marks this target as stopped

by setting �ag tgt_stop. When this �ag is set, all incoming from initiators commands are refused.

Then q2t_target_stop() schedules deletion of all sessions of the target.

Then q2t_target_stop() waits until all outstanding commands �nished and sessions deleted.

Then q2t_target_stop(), if necessary, calls qla2x00_disable_tgt_mode() to disables target mode, which

disables target mode of the corresponding HBA and resets it. Then qla2x00_disable_tgt_mode() waits

until reset �nished.

Then q2t_target_stop() returns and then q2t_target_release() frees the target.

If module qla2x00tgt is being unloaded, q2t_exit() at �rst takes q2t_unreg_rwsem on writing. Taking it is

necessary to make sure that q2t_host_action() will not be active during qla2x00tgt unload.

Then q2t_exit() calls scst_unregister_target_template() for tgt2x_template, which then in a loop will

unregister all QLA SCST targets from SCST as described above.

10.3 Enabling target mode

When command to enable target mode received, qla_target.tgt_host_action() with action EN-

ABLE_TARGET_MODE called. Then q2t_host_action() goes over all discovered remote of the being

enabled target and adds SCST sessions for all them.

Then it calls qla2x00_enable_tgt_mode(), which enables target mode of the corresponding HBA and resets

it. Then qla2x00_enable_tgt_mode() waits until reset �nished.

During reset �rmware initialization functions detect that target mode is enables and initialize the �rmware

accordingly.

10.4 Disabling target mode

When command to disable target mode received, qla_target.tgt_host_action() with action DIS-

ABLE_TARGET_MODE called. Then q2t_host_action() calls q2t_target_stop(), which processes as

describe above.

10. Target driver qla2x00t 32

10.5 SCST sessions management

As required by SCSI and FC standards, each remote initiator FC port has the corresponding SCST session.

Since qla2xxx is not intended to strictly maintain database of remote initiator FC ports as it is needed for

target mode, qla2x00t uses mixed approach for SCST sessions management, when both qla2xxx and QLogic

�rmware generate events and information about currently active remote FC ports.

Remote FC ports management also has to handle changing FC and loop IDs after fabric events, so it needs

to constantly monitor FC and loop IDs of the registered FC ports. This is implemented by checks in

q2t_create_sess() that being registered FC port already has SCST session and q2t_check_fcport_exist()

in q2t_del_sess_work_fn(). See below for more info.

Interaction with qla2xxx is implemented using tgt_fc_port_added() and tgt_fc_port_deleted()

qla_target's callbacks.

Callback tgt_fc_port_added() called by qla2xxx when the target driver detects new remote FC port. As-

signed to it q2t_fc_port_added() checks if an SCST session already exists for this remote FC port and, if

not, creates it.

Callback tgt_fc_port_deleted() called by qla2xxx when it deletes a remote FC port from its database.

Assigned to it q2t_fc_port_deleted() checks if an SCST session already exists for this remote FC port and,

if yes, schedules it for deletion.

Driver qla2x00tgt has 2 types of SCST sessions: local and not local. Sessions created by

q2t_fc_port_added() are not local. Local sessions created if qla2x00tgt receives a command from remote

initiator for which there is no know remote FC port and, hence, SCST session. Local sessions are cre-

ated in tgt->sess_work (q2t_sess_work_fn()) by calling q2t_make_local_sess(). All received from remote

initiators commands for local sessions are delayed until the sessions are created.

To minimize a�ecting initiators by FC fabric events, qla2x00tgt doesn't immediately delete SCST sessions

scheduled for deletion, but instead delay them for some time. If during this time a command from an

unknown remote initiator received, q2t_make_local_sess()/q2t_create_sess() at �rst check if a session for

this initiator already exists and, if yes, undelete then reuse it after updating its s_id and loop_id to new

values.

If a session not reused during the delete delay time, then q2t_del_sess_work_fn() asks the �rmware internal

database if it knows the corresponding remote FC port. If yes, then this session is undeleted and its s_id

and loop_id updated to new values. If no, the session is deleted.

10.6 Handling stuck commands

Driver qla2x00tgt de�nes in tgt2x_template callback on_hw_pending_cmd_timeout for handling stuck

commands in q2t_on_hw_pending_cmd_timeout() function, with max_hw_pending_time timeout set

Q2T_MAX_HW_PENDING_TIME (60 seconds). If the �rmware doesn't return reply for one or more

IOCBs for the corresponding SCST command, SCST core calls this callback.

In this callback all the stuck commands are forcibly �nished.

A. Debugging and troubleshooting 33

A Debugging and troubleshooting

SCST core and its drivers provide excessive debugging and logging facilities suitable to catch and analyze

problems of virtually any level of complexity.

Depending from amount debugging and logging facilities available, there are 3 types of builds:

• release - has basic amount of logging, suitable for basic tracing. Extra checking is disabled in this

mode. This is the default mode.

• debug - has full amount of logging and extrachecks enabled. Has slower and much bigger binary code,

but suitable for advanced tracing and debugging. Also in this mode more logging is enabled by default.

• perf - has all logging and extrachecks disables. Intended to performance measuremens, including

measurements of overhead introduced by the logging and extrachecks facilities.

Switch between build modes is done by calling "make x2y", where "x" - current build mode and "y" - desired

build mode. For instance, to switch from release to debug mode you should run "make release2debug".

A.1 Logging levels management

Logging levels management is done using "trace_level" �le located in the driver's proc interface subdirec-

tory. Each SCST driver has it, except in the perf build mode. For instance, for SCST core it's located in

/proc/scsi_tgt/. For qla2x00t it's located in /proc/scsi_tgt/qla2x00tgt/.

Reading from it you can �nd currently enabled logging levels.

You can change them by writing in this �le, like:

echo "add scsi" >/proc/scsi_tgt/trace_level

The following commands are available:

• add trace_level - adds (enables) the corresponding trace level

• del trace_level - deletes (disables) the corresponding trace level

• set mask - sets all trace levels at ones using a mask, e.g. 0x1538

• all - enables all trace levels

• none - disables all trace levels

• default - sets all trace levels in the default value

• dump_prs dev_name - dumps Persistent Reservations states for device "dev_name"

The following trace levels are common for all drivers:

• function - enables printing the corresponding function names for each logged messages

• line - enables printing the corresponding numbers of line of code for each logged message

• pid - enables printing PIDs of the corresponding processes or threads for each logged message

A. Debugging and troubleshooting 34

• scsi - enables logging of processed SCSI commands and their processing results

• mgmt - enables logging of processed Task Management functions

• minor - enables logging of minor events, line unknown SCSI commands or di�erence between bu�er

lengths encoded in CDBs and expected transfer values

• out_of_mem - enables logging of out of memory events

• entryexit - enables logging of functions entry and exit. Not available in the release build.

• mem - enables logging of memory allocation and freeing. Not available in the release build.

• debug - enables various debug logging messages. Not available in the release build.

• bu� - enables logging of various bu�ers contain. Not available in the release build.

• sg - enables logging of SG vectors manipulations. Not available in the release build.

• mgmt_dbg - enables debug logging of Task Management functions processing. Not available in the

release build.

• special - enables logging of "special" events. Intended to temporary enable logging of some debug

messages without enabling the whole "debug" level. Not available in the release build.

The following trace levels are additionally available for SCST core:

• scsi_serializing - enables logging of SCSI commands task attributes processings (SIMPLE, OR-

DERED, etc.). Not available in the release build.

• retry - enables logging of retries of rdy_to_xfer() and xmit_response() target drivers callbacks. Not

available in the release build.

• recv_bot, send_bot, recv_top, send_top - enables logging of commands bu�ers on various

processing stages. Not available in the release build.

A.2 Preparing a debug kernel

SCST logging can produce huge amount of logging, which default kernel con�guration can't cope with, so it

needs some extra adjustments.

For that you should change in lib/Kcon�g.debug or init/Kcon�g depending from your kernel version

LOG_BUF_SHIFT from "12 21" to "12 25".

Then you should in your .con�g set CONFIG_LOG_BUF_SHIFT to 25.

Also, Linux kernel has a lot of helpful debug facilities, like lockdep, which allows to catch various deadlocks,

or memory allocation debugging. It is recommended to enable them during SCST debugging.

The following options are recommended to be enabled (available depending from your kernel version): CON-

FIG_SLUB_DEBUG, CONFIG_PRINTK_TIME, CONFIG_MAGIC_SYSRQ, CONFIG_DEBUG_FS,

CONFIG_DEBUG_KERNEL, CONFIG_DEBUG_SHIRQ, CONFIG_DETECT_SOFTLOCKUP,

CONFIG_DETECT_HUNG_TASK, CONFIG_SLUB_DEBUG_ON, CONFIG_SLUB_STATS, CON-

FIG_DEBUG_PREEMPT, CONFIG_DEBUG_RT_MUTEXES, CONFIG_DEBUG_PI_LIST, CON-

FIG_DEBUG_SPINLOCK, CONFIG_DEBUG_MUTEXES, CONFIG_DEBUG_LOCK_ALLOC,

A. Debugging and troubleshooting 35

CONFIG_PROVE_LOCKING, CONFIG_LOCKDEP, CONFIG_LOCK_STAT, CON-

FIG_DEBUG_SPINLOCK_SLEEP, CONFIG_STACKTRACE, CONFIG_DEBUG_BUGVERBOSE,

CONFIG_DEBUG_VM, CONFIG_DEBUG_VIRTUAL, CONFIG_DEBUG_WRITECOUNT,

CONFIG_DEBUG_MEMORY_INIT, CONFIG_DEBUG_LIST, CONFIG_DEBUG_SG, CON-

FIG_DEBUG_NOTIFIERS, CONFIG_FRAME_POINTER, CONFIG_FAULT_INJECTION,

CONFIG_FAILSLAB, CONFIG_FAIL_PAGE_ALLOC, CONFIG_FAIL_MAKE_REQUEST,

CONFIG_FAIL_IO_TIMEOUT, CONFIG_FAULT_INJECTION_DEBUG_FS, CON-

FIG_FAULT_INJECTION_STACKTRACE_FILTER.

A.3 Preparing logging subsystem

It is recommended that you system logger daemon on the target con�gured:

• To store kernel logs in separate �les on the fastest disk you have. It will be better if this disk is

dedicated for logging or, at least, doesn't contain your LUNs data.

• To write the kernel logs to the disk in asynchronous manner, i.e. without calling fsync() after each

written message. Usually, you can achieve it, if you add a '-' sign before the corresponding �le path in

your syslog daemon conf �le, like:

kern.* -/var/log/kern.log

A.4 Decoding OOPS messages

You can decode an OOPS message to the corresponding line in C �le using gdb "l" command. For example,

an OOPS message has a line:

[<ffffffff88646174>] :iscsi_scst:iscsi_extracheck_is_rd_thread+0x94/0xb0

You can decode it by:

$ gdb iscsi-scst.ko

(gdb) l *iscsi_scst:iscsi_extracheck_is_rd_thread+0x94

For that the corresponding module (iscsi-scst.ko) should be build with debug info. But modules not always

have debug info built-in. To workaround it you can add "-g" �ag in the corresponding Make�le (without

changing anything else!) or enable in .con�g using "make menucon�g" building kernel with debug info. Then

rebuild only the .o �le you need.

For instance, to decode OOPS in mm/�lemap.c in the kernel you need enable in .con�g building kernel with

debug info and then run:

$ make mm/filemap.o

...

$ gdb mm/filemap.o

	Introduction
	Terms and Definitions
	SCST Core Architecture
	Target drivers
	struct scst_tgt_template
	More about xmit_response()

	Target driver registration functions
	scst_register_target_template()
	scst_register_target()

	Target driver unregistration functions
	scst_unregister_target()
	scst_unregister_target_template()

	Device specific drivers (backend device handlers)
	Structure scst_dev_type
	Device specific drivers registration
	scst_register_dev_driver()
	scst_register_virtual_device()

	Device specific drivers unregistration
	scst_unregister_virtual_device()
	scst_unregister_dev_driver()

	SCST sessions
	SCST sessions registration
	SCST sessions unregistration

	Commands processing and interaction between SCST core and its drivers
	The commands processing functions
	scst_rx_cmd()
	scst_cmd_init_done()
	scst_rx_data()
	scst_tgt_cmd_done()

	The commands processing context
	Preferred context constants

	SCST commands' processing states

	Task management functions
	scst_rx_mgmt_fn_tag()
	scst_rx_mgmt_fn_lun()

	SGV cache
	Implementation
	Interface
	sgv_pool *sgv_pool_create()
	void sgv_pool_del()
	void sgv_pool_flush()
	void sgv_pool_set_allocator()
	struct scatterlist *sgv_pool_alloc()
	void sgv_pool_free()
	void *sgv_get_priv(struct sgv_pool_obj *sgv)
	void scst_init_mem_lim()

	Runtime information and statistics.

	Target driver qla2x00t
	Driver initialization
	Driver unload
	Enabling target mode
	Disabling target mode
	SCST sessions management
	Handling stuck commands

	Debugging and troubleshooting
	Logging levels management
	Preparing a debug kernel
	Preparing logging subsystem
	Decoding OOPS messages

